В темноте вырывающаяся из диафрагмы светящаяся струя напоминает отточенное жало кинжала — сверкающее и холодное. Трудно поверить, что под его застывшими контурами бушуют страсти температур в несколько тысяч градусов. Это — плазма, вещество, отличное от твердого, жидкого или газообразного. Попав в поле пристального внимания исследователей позже этой привычной для нас триады, плазма получила название «четвертого состояния» вещества. Хотя по логике вещей ей следовало бы стоять в списке первой.
Плазма царит во Вселенной. Звезды и наше Солнце, газы межзвездного и межпланетного пространств — все это вещество в состоянии плазмы. На Земле же плазму приходится получать искусственно: здесьона гость, хотя гость и не такой уж редкий,— просто, сталкиваясь с нею, мы зачастую не подозреваем об этом. От газа в обычном смысле этого слова плазма отличается тем, что часть ее атомов и молекул ионизирована. Хотя общий заряд плазмы равен нулю, в ее состав наряду с нейтральными частицами входят и электрически заряженные — ионы и электроны. Строго говоря, даже при комнатной температуре газ содержит некоторое количество ионов и свободных электронов. Чем температура выше, тем интенсивнее движутся частицы, тем больше их скорость и чаще столкновения, приводящие к ионизации. С этой точки зрения и пламя спички, и электрическая дуга — все это плазма.
Температуры, при которых количество ионов и свободных электронов становится заметным, для разных веществ различны. Так, пары некоторых щелочных металлов интенсивно ионизируются уже при температуре 2 000 градусов, а превратить в плазму аргон удается только при 10 000 градусов. Впрочем, даже в этом случае нет четкой границы между плазмой и просто ионизированным газом. Принято лишь условно считать, что газ превращается в плазму в в тот момент, когда начинает проявлять ее сврйсива, основное из которых — электропроводность.
Плазма — проводник. Это значит, что ее ионы и электроны не только переносят электрический заряд,— попав в магнитное поле, они начинают упорядоченно двигаться в плоскостях, перпендикулярных его силовым линиям. Последнее свойство стало своего рода уздой, с помощью которой исследователи укрощают вещество в его четвертом состоянии, пытаясь заставить служить людям. Вот уже два десятилетия физики стремятся осуществить в плазме звездную реакцию превращения водорода в гелий — управляемый термоядерный синтез.
А с недавнего времени плазма попала и в сферу интересов химической науки. Ее взаимоотношения с плазмой проще: если физикам нужны температуры во многие миллионы градусов, то химики довольствуются несколькими десятками тысяч. В литературе такую плазму называют низкотемпературной, а в обиходе — «холодной».
В своем стремлении всячески активизировать промышленные процессы химики издавна пользуются испытанным средством— высокими температурами. С этой точки зрения плазма открывала почти неисчерпаемые возможности. Правда, еще недавно считалось, что за определенным порогом высоких температур вещество ждет только разрушение: диссоциация, дезагрегация, разложение. Однако действительная картина оказалась значительно сложнее: наряду с разрушением в плазме шли процессы образования новых химических соединений. Более того: подчас эти процессы рождали «экзотические» вещества, не существующие при обычных температурах, соединения, для которых в химической терминологии даже не было общепринятых наименований, — CaCl, Al2O, SO, SiO, С3, С9, Na2, Ва2О3. Так возникла новая отрасль науки — плазмохимия.
Плазма не новичок в химии. Ее начали использовать за много десятилетий до того, как появились термины "низкотемпературная плазма" и "плазмохимия".
Давно уже раскаленные газы, ионизированные пламенем сгорающего топлива, работают в различных химических установках. Но возможности этого метода ограниченны. Дело не только в том, что в амплуа генератора плазмы пламя дает температуры практически не выше 3 000 градусов — ограничения налагает сама химическая сторона процесса: для того, чтобы создать и сохранить плазму, в зону реакции необходимо подавать топливо, присутствие продуктов сгорания которого отнюдь не всегда способствует чистоте и направленности химических превращений.
На смену пламени пришел электрический разряд: уже в начале века появились электродуговые установки для фиксации (связывания) атмосферного азота в его окислы, а позднее — и установки для крекинга (разложения) природного газа на ацетилен и другие углеводороды. Однако и эти устройства не открыли плазме дорогу в химическую индустрию: температура свободно горящей дуги оставалась практически такой же, как у пламени, а ее создание и поддержание требовали больших затрат электроэнергии. Невелик был и выход конечных продуктов. Поэтому первый метод вскоре сошел со сцены, уступив место более экономичному аммиачному способу, а второй, хотя и дожил до наших дней, широкого распространения не получил. Более того, его рентабельность подчас оплачивается специальными ухищрениями; установки работают на дешевом сырье и в то время суток, когда спрос на электроэнергию невелик. Для того, чтобы плазма получила права гражданства, нужны были иные принципы и решения, новые устройства. Таким устройством стал плазмотрон.
В ставшем уже многочисленным семействе приборов с этим названием большое распространение получили плазмотроны электродуговые. В них поступающий в рабочую камеру газ — аргон, гелий, азот или водород — превращается в плазму с помощью дугового разряда, горящего между двумя электродами). Один из этих электродов обычно выполняется из тугоплавкого металла — вольфрама, молибдена или специальных сплавов, а второй, представляющий собой узкое сопло с циркулирующей под рубашкой охлаждающей водой,— из меди. Та же электрическая дуга, температура которой еще недавно едва превосходила обычное пламя, здесь приобретала иные качества: обжатая каналом сопла и магнитным полем, она позволяла получать температуры в несколько десятков тысяч градусов.
Какой материал может выдержать атаки столь грозных температур? Практически никакой. Но в этом и нет необходимости. Как всякий проводник под током, дуга вращается в магнитном поле, и точка ее соприкосновения с медным анодом — так называемое «электродное пятно» — быстро бегает по стенкам сопла, не давая им раскалиться. Это же поле помогает справиться и с самой плазмой — с его помощью ее струю можно «отжать» от стенок камеры плазмотрона, как бы заключив в невидимую «трубу» из магнитных силовых линий. Есть и иной способ обуздания плазмы — «газовая закрутка». Ее принцип прост: плазмообразующий газ подается в камеру в виде спирального вихря, под действием центробежных сил его более тяжелая, холодная, часть устремляется к стенкам и течет вдоль них тонким изолирующим слоем.
Магнитное поле и «газовая закрутка» стали своеобразными ключами, открывшими двери в мир высоких температур при сравнительно низких требованиях к жаропрочности материалов.