Композиты — это сочетание разнородных веществ, которые отличаются друг от друга своим состоянием. Основа любого композита — матрица и наполнитель. Матрица предназначена для того, чтобы объединять частицы или конструкции наполнителя в одно целое, равномерно распределять их между собой, предохранять от влияния внешней среды, а также перераспределять внутренние напряжения.
Композит с высокими механическими характеристиками можно получить лишь тогда, когда несущими элементами становятся прочные и жесткие волокна. В этом случае композитная структура действует как механизм подавления трещин. Комбинирование жестких волокон с матрицей позволяет предупредить хрупкое разрушение, использовать такие свойства волокнистых материалов, как высокая прочность и жаропрочность.
Волокнистые наполнители могут быть дискретными и непрерывными. Кроме волокон, в качестве наполнителя также используются порошкообразные материалы.
Все многообразие композитов можно условно разделить на три группы (по типу матрицы): полимерные, металлические и керамические.
Композиты на основе полимерной матрицы в зависимости от наполнителя представляют собой стеклопластики, углепластики, боропластики, органопластики, базальтопластики, древеснослоистые пластики (ДСП). В качестве связующих применяют в тех или иных целях практически все термопластичные и термореактивные полимеры, однако наиболее часто в промышленности используются эпоксидные, полиэфирные, фенолформальдегидные, кремнийорганические и полиимидные смолы. Именно композиты на полимеркой матрице находят сейчас самое широкое применение. При получении их можно наделить требуемыми свойствами в самом широком диапазоне. Кроме того, эти композиты технологичны, их использование экономично и обеспечено обширной сырьевой базой для получения исходных компонентов. Полимерные композиты по сравнению с другими материалами выделяются своей прочностью, жесткостью и плотностью. Так, удельная прочность стали составляет 21 10-5 см, а композита на основе ортогонально-перекрестного стекловолокнита 50 10-5см.
Углеродопластики по удельной прочности превосходят алюминий и титан и применяются в авиации, космической технике, для создания легких, прочных, долговечных конструкций. Полимерные материалы в отличие от металлов не подвержены коррозии, поэтому композиты на их основе широко применяются в химической промышленности для изготовления труб, насосов, реакторов, баллонов высокого давления. Например, срок службы трубопровода из эпоксидного стеклопластика по сравнению с металлом в 10 раз выше.
Композиты на металлической матрице — это чистые металлы, либо сплавы на основе алюминия, магния, титана, армированные как волокнами, не подверженными пластической деформации (карбид кремния, окись алюминия, бор, углерод, нитевидные кристаллы тугоплавких соединений), так и пластически деформируемыми металлическими волокнами (бериллий, вольфрам, молибден, сталь). Первая группа обладает максимальной прочностью, сопротивлением усталости, жаропрочностью, а также — высокими удельными характеристиками вследствие низкой плотности наполнителей. Вторая группа — технологичностью при сравнительно небольших значениях прочности и модуля упругости.
Металлическая матрица по сравнению с пластиками существенно повышает упругость и прочность композита, сохраняя эти свойства почти до своей температуры плавления. Кроме того, металлические композиты обладают лучшей работоспособностью в вакууме и в условиях облучения, а также — пониженной воспламеняемостью. Недостатки металлической матрицы — большой удельный вес, трудоемкость изготовления.
К этой группе можно также отнести «естественно получаемые» композиты на основе эвтектических сплавов. Здесь упрочняющими элементами служат вытянутые в необходимом направлении карбиды, нитриды и т. п. (частицы второй фазы эвтектики) при строго контролируемом процессе направленной кристаллизации сплава.
Использование композитов с металлической матрицей резко уменьшает массы деталей, а это чрезвычайно важно для авиационной и космической техники. Бор-алюминий (композит на основе борных волокон с алюминиевой матрицей) позволяет значительно снизить массу самолета. Появляется возможность увеличить его полезную нагрузку без уменьшения скорости и дальности полета.
Углеродометаллы — композиции с медными, свинцовыми и цинковыми матрицами— применяют в химической промышленности при производстве батарей и аккумуляторов, в изделиях, работающих на трение.
Области применения металлических композитов определяются не только механическими, но и физическими свойствами — электрическими, магнитными, ядерными, акустическими и т. д. Так, для проводов высоковольтных линий применяют медную проволоку, армированную волокнами ниобия. Это дает возможность увеличить расстояние между опорами в 2—3 раза. Композиты с матрицами из алюминия, меди, титана и никеля на основе волокна из различных сплавов ниобия используются как сверхпроводники.
Композиты на основе керамической матрицы появились сравнительно недавно. Как известно, керамика обладает комплексом ценных свойств: высокой прочностью, стабильностью при повышенных температурах, низкой плотностью, коррозионной стойкостью. Но при этом керамические материалы слишком хрупки, чувствительны к тепловому удару. За счет армирующих элементов удается повысить ее ударную вязкость и стойкость к перепадам температур.
Керамические композиты создаются на основе карбида кремния, нитридов кремния и бора, боросиликатных стекол, углерода и других материалов. В настоящее время наиболее широкое применение получили композиты типа углерод-углерод, где оптимально сочетаются высокая прочность с температуро-устойчивостью.
Углерод-углеродные композиты используют для изготовления эрозионно-стойких сопл реактивных двигателей. Они позволяют уменьшить вес сопла и упростить его конструкцию. Благодаря высоким фрикционным характеристикам углерод-углеродные композиты пригодны для изготовления дисков авиационных тормозов.
В последние годы интенсивно разрабатывается технология получения гибридных композитов. Они, как правило, состоят из двух или нескольких типов волокон, заключенных в одну матрицу. Гибриды обладают некоторыми уникальными свойствами, значительно превосходящими свойства обычных композитов. Это, например, сбалансированные прочность и жесткость при малой плотности и стоимости, улучшенные усталостные характеристики и высокая стойкость к удару. Наиболее широко распространены гибридные композиты на основе полимерных волокон из ароматического полиамида в сочетании со стеклянными или углеродными волокнами. Такого рода композиты используют конструкторы - биомеханики для создания облегченных переносных аппаратов искусственного дыхания и всевозможных протезов.
Наряду со стеклопластиками, углеродопластиками, органопластиками гибридные композиты используются для изготовления спортивного инвентаря: теннисных ракеток, клюшек для игры в гольф, удочек, рам для велосипедов, корпусов спортивных судов.
Композиты обладают разнообразным сочетанием физико-механических свойств, которые часто невозможны в традиционных конструкционных материалах. Своей прочностью, долговечностью, инертностью к агрессивным средам они превосходят в 3—5 раз металлы, причем эти свойства сочетаются с регулируемой теплопроводностью. Кроме того, технология изготовления деталей машин и конструкций из композитов часто существенно упрощается за счет сокращения стадий изготовления.
В целом создание композитов означает, что начался новый этап конструирования материалов под определенные условия эксплуатации, под заданную конструкцию.